Arctic microalgae are survivalists

environmentmarine lifeclimate changearcticmicroalgae
AWI biologists sample the Kongsfjord (Spitzbergen)
(c) Alfred-Wegener-Institut / Paolo Verzone

Microalgae communities in coastal waters remain productive under variable environmental conditions They are the basis of the Arctic food web - and extremely resilient: as the water becomes more acidic and the light or temperatures change, various Arctic microalgae communities seem to maintain their productivity and species composition. This is the result of a study by researchers from the Alfred Wegener Institute, which they have published together with Canadian colleagues online in the journal Nature Climate Change. However, whether the food sources of seals, whales and different fish species in the Arctic can adapt to global changes remains to be explored. Sometimes permanent darkness under meter-thick ice, sometimes 24 hours of daylight; sometimes clear, salty seawater, sometimes murky fresh water from rivers; and all under freezing temperatures: microalgae in Arctic coastal waters are exposed to extreme and highly variable environmental conditions. What big challenges can be an advantage in times of global change. Because this arctic phytoplankton has adapted in the course of evolution to variable environmental conditions. This may explain why some microalgae communities are better able to adapt to global change than communities from regions with more stable environmental conditions. We were able to show that some microalgae are the most important arctic primary producers with high resistance. For example, they are less responsive to ocean acidification than we know from communities in the Southern Ocean or temperate regions ," says biologist Dr. Clara Hoppe from the Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research (AWI). She had experimented with natural phytoplankton communities to change temperature, light regime and pH, and determined the productivity of microalgae. The oceans are acidifying because the burning of fossil fuels releases more carbon dioxide into the atmosphere. In the water, the CO2 reacts to carbonic acid and reduces its pH, which, for example, at the cellular level can influence the metabolism and thus the productivity of organisms. In nine out of ten experimental approaches, productivity remained similar. Only in the experiment with the lowest temperature of 1.8 degrees Celsius did increasing acidification result in decreasing productivity. At the other experimental temperatures between 3 to 8 degrees Celsius, ocean acidification had no measurable effects for the one to three-week experiments. " We conclude that the microalgae can buffer the higher levels of protons associated with decreasing pH as long as the temperatures remain within the right limits, " the authors report in the study. The overall ability of coastal zone phytoplankton to remain productive even under widely varying environmental conditions leads the scientific team back to various mechanisms. On the one hand, the individual microalgae seem to be able to handle different environmental conditions very flexibly, as the AWI team was able to show in further laboratory experiments. On the other hand, many diatom species form spores that can survive several years on the seabed. If the environmental conditions are favourable for certain spores, the microalgae develop and can form plankton blooms. Thus, there is a sort of seed bank with high intra- and inter-species diversity, which gives algae species or strains that cope particularly well with many environmental combinations. Primary production in the Arctic is an important ecosystem service from which increasingly commercially important fishing grounds will depend. We were able to show that in the laboratory test the producers are surprisingly resistant to the ocean acidification expected by the end of the century - good news! " Clara Hoppe is pleased. Nevertheless, it is important to understand the limitations and costs of this resistance, to which their study makes an important contribution. Whether the results allows making statements for the complex food web in nature remains to be investigated. Link zur studie: https://www.nature.com/articles/s41558-018-0142-9

AWI biologists sample the Kongsfjord (Spitzbergen)
(c) Alfred-Wegener-Institut / Paolo Verzone
Laboratory work at AWIPEV research station in Ny-Ålesund, Spitzbergen.
(c) Alfred-Wegener-Institut / Rene Bürgi

stock-art-wager
Freediving Kona: Discover Hawaii's 10 Best Dives

코나 프리다이빙: 하와이 최고의 다이빙 포인트 10곳을 알아보세요

코나는 프리다이버들에게 가장 인기 있는 목적지 중 하나입니다. 현지인의 팁과 꼭 가봐야 할 명소를 통해 코나 최고의 프리다이빙 경험을 만끽해 보세요.

1일 전
roatanmarineparkadammoore
Benefits of Marine Reserves: What Divers Should Know

해양 보호 구역의 이점: 다이버들이 알아야 할 사항

생물 다양성 증진부터 기후 변화에 대한 회복력 강화까지, 해양 보호 구역의 이점과 지금 해양 생태계를 보호하는 것이 그 어느 때보다 중요한 이유를 알아보세요.

3 일 전
jman78
Kids Scuba Trips: Tips for Finding Family-Friendly Options

어린이 스쿠버 여행: 가족 친화적인 옵션을 찾기 위한 팁

아이들과 함께 스쿠버 다이빙 여행을 계획 중이신가요? 최고의 가족 친화적인 다이빙 명소, 필수 장비 팁, 그리고 전 세계 공인 다이빙 센터를 선택하는 방법을 알아보세요.

5 일 전
predrag-vuckovic
How to Become a Freediving Instructor: A Six-Month Roadmap

프리다이빙 강사가 되는 방법: 6개월 로드맵

프리다이빙 강사가 되는 방법을 궁금해하시나요? 이 6개월 가이드는 초보자부터 프로까지 성장하는 데 필요한 교육 과정, 기술, 그리고 단계를 안내합니다.

7 일 전
wei-shang
How Can You Become a Mermaid? The Ultimate Guide

인어가 되는 방법: 완벽한 가이드

인어가 되려면 어떻게 해야 할까요? 오늘부터 인어 여정을 시작하는 데 필요한 모든 것을 알아보세요. 훈련, 기술, 안전, 그리고 최고의 인어 교육 과정까지!

9 일 전